nanoScan® SPECT/CT

Versatile SPECT/CT with absolute quantification and full stationary dynamic imaging

Founded 1990

Offices

Employees 300+

Countries 100+

Preclinical systems 300+

Clinical systems 1350+

1990 1994

Introduction

of the first Mediso

gamma camera

Mediso

founded

2000

Nucline[™] X-ring/4R, 4-head dedicated brain SPECT

2010 Launch of nanoScan®

ever sub-mm resolution

PET/CT, world's first

preclinical PET/CT

2013 Mediso USA founded

2014

MultiScan[°] LFER 150, world's first sub-mm resolution mobile PET/CT

2016

AnyScan[®] TRIO Introducing the nanoScan® **SPECT**, introduction PET/MRI 3T world's first of triple SPECT superconducting detector family preclinical PET/MRI

2015

2006

Launching the first

the NanoSPECT/CT

Mediso preclinical system

About us

Mediso works in the field of medical imaging for 30+ years with a profile of development, manufacturing, selling and servicing standalone and multi-modality imaging devices. The company offers complete solutions from hardware design to evaluation and quantification software for clinical patient care and preclinical research.

Mediso has a leader position in the preclinical imaging market with over 300 commissioned systems around the world. Beyond the market leading nanoScan® PET/CT and SPECT/CT, Mediso also offers standalone MRI and integrated PET/MRI systems based on a cryogen-free magnet with 3T or 7T field strength and a PET insert for simultaneous PET/MRI imaging. Products are sold directly or through a distribution network in 100+ countries worldwide

2018

Installation of the 100th nanoScan[®] PET system

2022

Installation of the 300th preclinical imaging system

2023

Launch of the nanoScan® MRI 7T and the PET Insert

Key features

SPECT system

Highest resolution: 0.3 mm *in vivo* and high sensitivity: 13 000 cps/MBq (481 cps/µCi)

Largest field of view

- Scanning of the entire cross section of animals without moving them
- Large and multiple animal imaging

Highest flexibility

- Widest isotope energy range from
 ¹²⁵I to Theranostic and PET isotopes
 (20 keV–1 MeV and above)
- Different imaging schemes and applications
 SPECT (3D): helical, circular and full stationary
 Planar (2D)
- Widest range of collimators (multi-pinhole, parallel-hole, single-pinhole)
- Widest range of animal models: mice, rats, marmosets, up to large rabbit (6.5 kg / 14 lbs)

Excellent quantification and homogeneity by exploiting rotational capabilities

Respiratory and cardiac gating

Largest installation base >150 systems

CT system

High-resolution: $30 \ \mu m$ with small voxel size: $10 \ \mu m$

Up to **×7.6 zoom**

Largest transaxial field of view: 12 cm

Highest power: 80 W X-ray tube for
Large animals
Better image quality
Fast scanning
Ex vivo samples

Ultra-low-dose protocol: <1 mGy for whole-body mouse

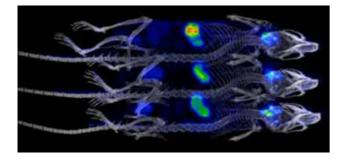
Real-time Feldkamp and iterative reconstruction

Respiratory and cardiac gated reconstruction

DESIGNED FOR DYNAMIC STUDIES

Free access to the animal during the scan

Minimized dead space for dynamic imaging


Starting acquisitions from touch screen

Physiological monitoring of up to 3 animals simultaneously

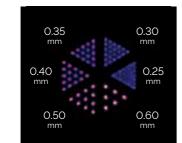
Technology cornerstones

Largest field of view for large or multiple animal imaging 4

- Large detector field of view: 27 x 27 cm² (10.6" x 10.6")
- Wide gantry opening: up to 27 cm
- > Various animal models from tiny mouse to large rabbits (6.5 kg / 14.3 lb)
- Multiple mouse imaging chamber with physiological monitoring feature for all animals

2 DETECTORS

In-house developed detectors built of Nal crystals capable of detection of high energy gammas coupled with optimized PMT matrix arrangement for best intrinsic resolution and high-level performance.


Our multi-pinhole (MPH), single-pinhole and parallel-hole collimators are optimized together with the detectors and reconstruction engine. Wide range of available collimators customized for various applications.

High sensitivity and high resolution SPECT simultaneously

- > Proprietary and patented multi-pinhole collimator technology and reconstruction package offering excellent spatial resolution, high sensitivity and large field of view at the same time
- Outting-edge sensitivity even for high-energy isotopes ensured by 9.5 mm thick sodium iodide (Nal:Tl) crystals

with large area and minimal detector gaps

Exclusive imaging performance with ultra-low activity

5 TERA-TOMO™ **IMAGE RECONSTRUCTION**

Our proprietary iterative reconstruction engine, used in both clinical and preclinical systems ensures quantitative results with accurate modelling of all relevant diagnostic and theranostic SPECT isotopes.

SPECT list mode

raw data

3D iterative reconstruction applying deep Monte Carlo based physical modelling of particle-level interactions and radionuclide specific phenomena all the way from gamma emission until detection.

188

3 DATA ACQUISITION

Proprietary electronics and detector level corrections (e.g. position, energy, linearity) enabling list-mode data acquisition and handling of multiple energy windows.

4 WIDE RANGE OF IMAGING MODES AND COLLIMATION **TECHNIQUES**

From helical to full stationary scans with wide range of MPH collimators; Whole-body planar imaging with single-pinhole collimator; Large animal imaging with parallel-hole collimator.

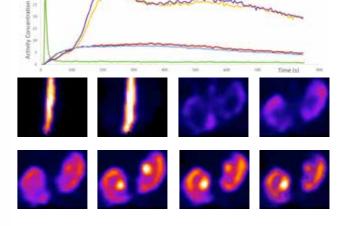
NCED CORRECTIONS

cT image

Single pinhole maging

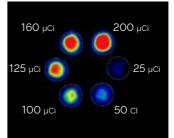
hole imaging

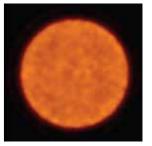
Advanced corrections for radionuclide level physical phenomena (i.e. decay, child-elements) and for various object-radionuclide interactions (i.e. scatter, attenuation). Combined with collimator modelling the Tera-Tomo reconstruction accounts for all possible effects and interactions.



2

5


Fast dynamic SPECT with Full Stationary imaging


> PET-like dynamic imaging with list-mode data storage > Fully motionless acquisition providing time-continuous data from the whole cross-section of the animal S 3D quantitative dynamic imaging with 1-3 s time frames > Time-Activity Curve creation from quantitative 3D results.

Absolute quantitative imaging with excellent homogeneity

- 2 4 5
- Tera-Tomo[™] 3D SPECT iterative reconstruction with CT-based attenuation, scatter and advanced corrections
- > Excellent homogeneity by helical scanning providing superior angular coverage
- > Time-Activity Curve (TAC) generation and calculation of Standardized Uptake Values (SUV)

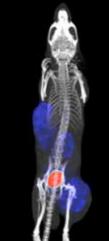
Real clinical translation in theranostic imaging

Mediso is the only company providing a complete translational theranostics platform enabling direct theranostic imaging from preclinical research all the way until patient care. The cornerstones of our SPECT technology were designed to be fully quantitative across a wide energy range allowing accurate radiation dosimetry for preclinical and clinical studies.

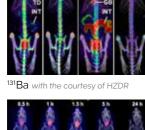
Same platform of

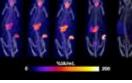
Dedicated high energy collimators Proprietary Nal detector design with optimized crystal thickness

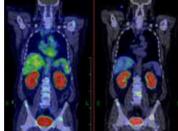
for wide energy range


- True list-mode data Monte-Carlo radionuclide modelling for all isotopes
- Simultaneous multiple-isotope imaging

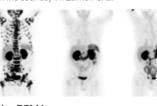
enabling real translation


AnyScan® TRIO TheraMax SPECT Universitätsklinikum Heidelberg


Both our preclinical and clinical theranostic SPECT scanners are calibrated to various istopes used in targeted radionuclide therapy to provide accurate dosimetry and for monitoring therapeutic responses and disease progression.


¹⁷⁷Lu with the courtesy of ScanoMED Ltd

8



¹⁸⁸ReO4 with the courtesy of Kings College London, United Kingdom

77Lu-PSMA

225Ac-PSMA with the courtesy of Prof. Dr Uwe Haberkorn and Prof. Dr. Clemens Kratochwil

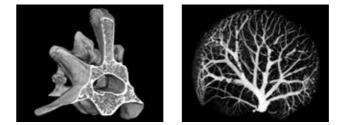
¹⁷⁷Lu-DOTA-TATE

High power CT with large FOV and high resolution

The nanoScan CT system combines a powerful X-ray tube with variable geometrical magnification, therefore it covers all possible CT applications regardless whether they require high power, large field of view, or high spatial resolution.

The real time image reconstruction allows to minimize the study duration and to get the CT volume ready for attenuation and scatter correction of multimodality studies without additional waiting time. The possibility

of scanning up to four animals simultaneously multiplies the throughput further. The system also covers wide range of standalone CT-applications from measuring bone mineral density in high resolution bone scans to



Highest power with largest FOV Lowest dose preclinical CT

The high power (80 W) X-ray tube together with the largest field of view (12 cm transaxial and 45 cm helical scan range) enables high performance scanning of large animals: large rats or rabbits up to the weight of 6.5kg or multiple animals: four mice or two rats simultaneously. The highest photon flux also allows to reduce wholebody scan time without compromising the image quality.

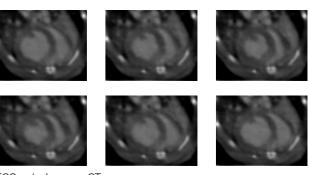
High spatial resolution

The system offers variable magnification (up to 7.6x) for high-resolution imaging even with 10 µm isotropic voxel size. Low noise and excellent image quality are also ensured by iterative image reconstruction.

Mouse vertebra and liver (10 µm and 20 µm voxel size)

¹⁶⁵Ei

with the courtesy of Semmelweis


PET isotopes

ECG and respiratory gated CT studies. The iterative image reconstruction offers excellent low contrast imaging, but also a key to reduce the dose to the animal below 1mGy per scan.

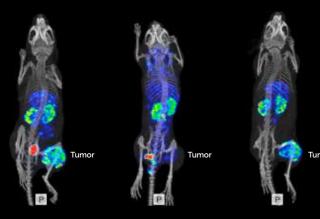
The high-power tube is equipped with a thick aluminium filter absorbing low energy X-rays that would create unnecessary dose to the animal. Adding iterative image reconstruction the Ultra-low dose CT protocol enables whole-body mouse scans with <1mGy radiation dose. Therefore, there is no need to eliminate CT based attenuation and scatter correction for any PET or SPECT scan.

ECG and respiratory gating

Cardiac and respiratory gated CT studies are also available both for reducing motion artefacts and for analysis of cardiac and pulmonary function.

ECG gated mouse CT

SPECT/CT Applications


Tool for imaging of the SARS-CoV-2 entry receptor using ⁶⁷Ga-labelled radiopeptides

The angiotensin converting enzyme-2 (ACE2) – entry receptor of SARS-CoV-2 – and its homologue, the ACE, play a pivotal role in maintaining cardiovascular homeostasis. ⁶⁷Ga-HBED-CC-DX600 was revealed as the most promising candidate for ACE2 selectivity due to its favorable tissue distribution profile.

ANIMAL: Xenograft-bearing female CD1/nude mice RADIOTRACER: 10MBq of various ⁶⁷Ga-DOTA-based radiopeptides ACOUISITION AND RECONSTRUCTION: ~50 min 1h, 3h, 24 h p.i.; energy windows of: 93 keV (±10%), 185keV (±10%) and 300 keV (±10%) D Beyer et al, EJNMMI Research 13, 2023

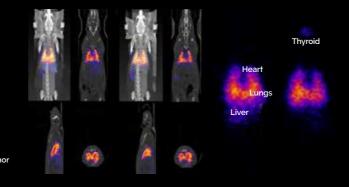
Heterodimeric ¹¹¹In-based radiotracer targeting PSMA and GRPR

Coinjection of non-labeled PSMA-11 and NOTA-PEG4-RM26 resulted in decreased kidney uptake and negligible activity uptake in the tumor. Activity cleared from healthy organs and blood with time, leading to an improved imaging contrast at 3h p.i.

ANIMAL: BALB/c nu/nu mice with PC3-pip (isogenic human prostate carcinoma) RADIOTRACER & ACOUISITION: 830kBq 10 In-BQ7812; 1 h, 3 h p. i. F. Lundmark et al, Pharmaceutics 2020, 12

mNIS-SPECT (^{99m}Tc) imaging of cancer metastases

Based on the expression of murine sodium iodide symporter (mNIS), this approach facilitates sensitive, non-invasive a non-immunogenic detection of syngeneic tumor cells with the following research advantages:

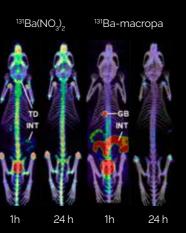

- mNIS expression can be detected by SPECT or PET
- offers very high image contrast of tumor lesions
- gamma radiation is minimally attenuated or scattered by overlying tissuef

ANIMAL: C57BL/6 mice with pancreatic ductal adenocarcinoma hepatic metastases RADIOTRACER & ACOUISITION: 50 MBq 99mTc-sodium pertechnetate,

total SPECT scan time 10 minutes, 60 min p. i. J. R. Merill et al, Cell Stress 2023; 7(8): 59–68.

Ultra-low dose therapeutic efficacy in diseased lungs by ¹²⁵I-labelled bispecific antibody

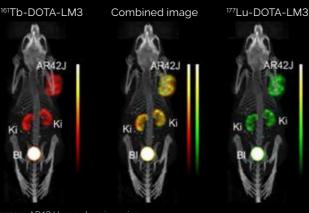
Caveolae pumping in the vascular endothelium can pump therapeutic antibody into diseased lung to achieve unprecedented precision therapeutic targeting and efficacy. Whole-body SPECT imaging showed robust lung uptake of ¹²⁵I-833c&Freso after 24 or 48 h injected intravenously.



ANIMAL: Female Sprague Dawley rats weighing 200–220 g with Bleomycin-induced acute lung injury

RADIOTRACER: 16.5-130 µCi (0.6-4.8 MBq) ¹²⁵I-labelled antibodies (833c&Freso, 833cX&Freso, and fresolimumab) ACOUISITION: 60 min 1 h and 24 h p.i. A. H. Kadam et al, PLoS One. 2022; 17

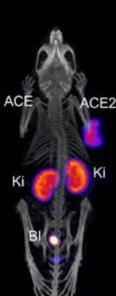
Imaging of ¹³¹Ba as a diagnostic match for ²²³Ra


¹³¹Ba possesses the suitable half-life of 11.5 d hereby making it highly beneficial for potential diagnostic use in nuclear medicine and has photopeaks at at 124 keV and 216 keV, as well as two prominent high-energy peaks at 371 keV and 496 keV

ANIMAL: weeks old female athymic nude mice 12-14 weeks old RADIOTRACER: 6-7 MBq of ¹³¹Ba(NO₃)₂ or ¹³¹Ba-labeled macropa ACOUISITION: 90 min after 1h and 24 h i.v. injection F. Reissig et al, Pharmaceuticals 2020, 13

Theranostics: simultaneous dual-isotope imaging of ¹⁶¹Tb- and ¹⁷⁷Lu-DOTATOC

¹⁶¹Tb and ¹⁷⁷Lu are interchangeable without altering the chemical and pharmacokinetic properties of the radiolabeled biomolecule.


ANIMAL: AR42J tumor-bearing mice RADIOTRACER: ¹⁶¹Tb-DOTATOC (15 MBq, 0.5 nmol/mouse) and ¹⁷⁷Lu-DOTATOC (15 MBq, 0.5 nmol/mouse)

ACQUISITION: dual-isotope SPECT/CT

RECONTSRUCTION: Energy windows used for ¹⁶¹Tb: – 47.7 keV ± 10%, which enabled the detection of X-rays and -rays (46.0 keV. 48.9 keV and 52.0 keV)

- 74.6 keV ± 10%, enabling the detection of -rays (74.6 keV)

F. Borgna et al, Pharmaceutics 2021, 13

Whole-body angiography of rat's vasculature

Whole-body angiography of a large (500 g) rat's vasculature after contrast agent injection into the left carotid artery.

ANIMAL: 500 g Wistar rat ENERGY: 50 kVp TUBE POWER: 80 W ACQUISITION TIME: 5 min

Complete SPECT/CT workflow

Perform routine scans with the clinical validated Nucline[™] acquisition software

Nucline acquisition software has been developed for multimodal medical imaging devices and is used in clinical and preclinical systems as well. It provides the same easy-to-use, integrated framework and main features for all the different modalities (PET, SPECT, CT and MRI). It integrates wide range of functionalities of acquisition, calibration, data management, reconstruction and visualization. Nucline has been developed with focus on clean and user-friendly interface, while complying to industry standards (CFR11, DICOM) and high level cybersecurity expectations.

1 PERSONALIZED ACCESS LEVELS

- Routine: A couple of clicks and the system is ready to run a studyspecific, optimized protocol. Only geometry is to set: error-free scanning guaranteed.
- Advanced: Several acquisition and reconstruction parameters are editable providing the chance to further optimize the protocols for the study.
- **Research: Access for all system parameters** for researchers with significant experience

2 FOCUS ON QUALITY Ö

- **Automatic**, quick daily QC protocols
- \mathbf{O} Real-time diagnostic feedback
- Ø Calibrations can be stored for multiple isotopes.

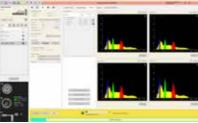
Visual uniformity test

3 INTUITIVE ACQUISITION PLANNER

- Designing scans graphically based on CT scout
- Start SPECT and CT scanning by 2 clicks using the predefined protocols
- Ο Handle radiotracer information easily, even while scanning
- \mathbf{O} Design dynamic frames and reconstructions graphically
- Copying FOV from one modality to other
- **Easy-to-use image viewer** to check the result image before next step

4 FULL LIST-MODE FEATURES: FILTERING IN ENERGY AND TIME

- Scans can be rebinned in to various different dynamic time frames for optimal results
- Multiple energy peaks (15+) can be handled, supporting isotopes with multiple peaks or using multiple isotopes in one scan.


Energy window planner

Hot rod phantom test

Side view topogram for acquision planning

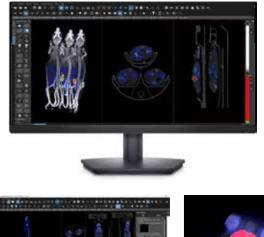
Spectra of each detector during ¹⁷⁷Lu scan

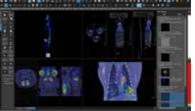
5 PREDEFINED, CONFIGURABLE PROTOCOLS

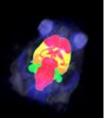
- Multimodality multi-step pre-saved factory protocols optimized for various applications
- > Factory protocols can be copied, edited, fine-tuned by the User
- > Application specific User protocols can be saved and loaded easily assuring quick, reliable scanning
- Protocol steps can run **automatically** one by one

Analyze your quantitative data with the FDA approved InterView[™] FUSION visualization and evaluation software

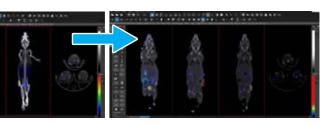
The FDA approved and clinically validated InterView[™] FUSION multi-modal post-processing software is an essential part of system. It provides a wide range of functionalities to evaluate PET/SPECT/CT/MRI preclinical data for example:


- Automatic multiple animal image separator
- Brain atlas
- Wide range of 2D and 3D image viewers and rendering for visualization including 3D MIP and 3D Volume Rendering
- 3D and 4D data fusion via all image viewers and visualization of them over time frames
- Large variety of ROI/VOI tools
- Time activity Curves (TAC) of multiple ROIs/VOIs over 4D dynamic data with multiple statistics (min, max, mean, stdev, sum, etc.)
- Automatic co-registration procedures (rigid, affine and non-linear)
- Advanced segmentation methods
- Wide range of data input/output/export capabilities including video formats



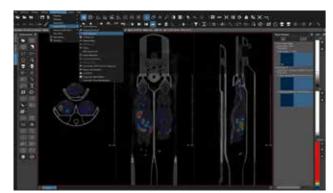

3D MIP viewer with VOIs and related TACs Automatic multiple animal image separator

Steps	+	1	Ē	1	t
Step				Sta	tus
(CT) Side Vi	ew			~	·
(T) Top Vie	ew			~	•
(T) Scan				~	•
MM PinSPE	CT (Tc99	m)		~	·
NM SemiSPECT (Tc99m)		~	•		
Gated PinSPECT (Tc99m)			¢	•	



Various image viewer tools

Rat brain atlas

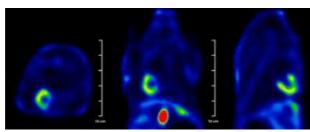


Throughput tripled

Fully automated workflow for multiple-animal imaging

With the fully automated complete multiple-animal workflow the improvement in throughput is not limited to acquisition but enables significant improvement in reconstruction and image analysis time as well. There is no need to any manual modifications in animal or dose data, the solution offered takes care of the whole process automatically, ensuring quantitative SUV data in the end.

- **Record animal data** (animal ID, weight, injected activity etc.) for all animals separately and store it in the raw acquisition file.
- Acquisition is as simple as a single animal scan: individual physiological monitoring for all animals
- Ø Reconstruction: The whole scanned volume can be reconstructed within a couple of minutes
- > Automatic erasing of the chamber in the Inter-ViewFUSION software in one click of a button
- Automatic separation of animal images to individual DICOM sets
- Ø Applying dose and weight information separately and save them to the DICOM header ensuring:



Automatic erasing of the chamber

Automatic separation

Unique rabbit and multiple-animal imaging possibilities

Using parallel-hole collimators offers large gantry opening and field of view (25×25 cm), that enables scanning of larger animals, like rabbits, even up to 6.5 kg. Additionally, with the large single-bed-position field of view and high sensitivity of the rat multi-pinhole collimator three mouse imaging is allowed routinely resulting in unprecedented throughput.

Perfusion imaging with 15 minutes circular scan of healthy rabbit of ~6.5kg.

Flexible options for installation

The nanoScan[®] SPECT/CT system is designed to have small footprint and to be installed in any lab. At the same time dynamic SPECT-imaging capabilities are supported with all possible means i.e. free access to the animal in the field of view, minimal dead space and starting acquisition from the touchscreen. As X-ray safety is an important topic for every imaging lab, the nanoScan[®] SPECT/CT fits all possible requirements. From closed box X-ray option to open CT system in separate acquisition room various possible configuration are offered.

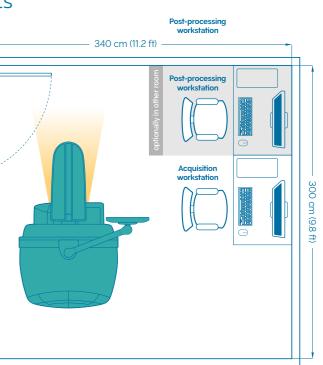
nanoScan® PET/CT and SPECT/CT reference installation of two systems in one small laboratory Closed box CT option installed

Minimal installation requirements

Light-weighted systems with small footprint: 800 kg, 1760×1050 mm (L×W)

No need for control or technical room.

- All workstations can be placed next to the system
- Post-processing workstation can be next to the acquisition workstation or at the researcher's room
- Acquisition can be started from touchscreen
- As the nanoScan[®] SPECT/CT is a closed and properly shielded system (compliant with the regulations of IEC/EN 60601-1-3 12.4 and 12.5), it is not necessary for the operator to leave to camera room even in standard configuration.



Quantitative SUV data for each animal automatically.

CLOSED BOX CT OPTION

Available option ensuring zero radiation emission in the imaging room.

Animal handling

SPECT collimators for all applications

MultiCell[™] imaging chambers

Mouse L

Inner space: 141×31 mm Outer dimension: 466×40 mm Up to 80 g Also available in BSL3 version

Inner space: 249×60 mm Outer dimension: 580×70 mm Up to 600 g

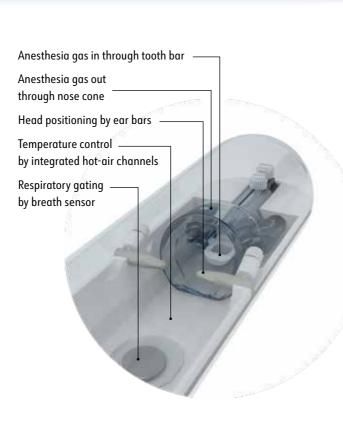
Rat Dual

Inner space: 240×60 mm Outer dimension: 590×70 mm Up to 2×200 g

Mouse Triple

Inner space: 144×26 mm Outer dimension: 488×70 mm Up to 3×30 g

Marmoset


Inner space: 65×440 mm Outer dimensions: 70×540 mm Up to 600 g

Monitoring and gating

- » ECG monitoring and triggering
- » Respiration monitoring and triggering
- » Temperature monitoring and control module
- » Accesibble from touchscreen and workstation

Respiration and body temperature monitoring even for four animals

Mouse BSL3

Inner space: 141×31 mm Outer dimension: 578×60 mm Up to 80 q

Inner space: 150×600 mm Outer dimensions: 160×760 mm Up to 6.5 kg

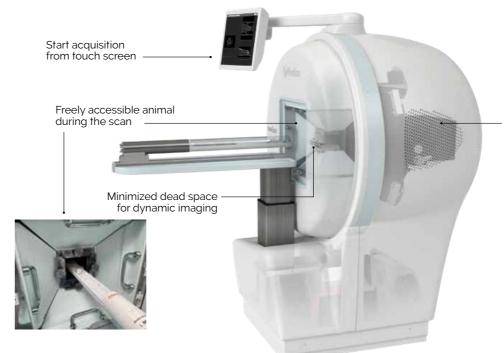
PrepaCell™

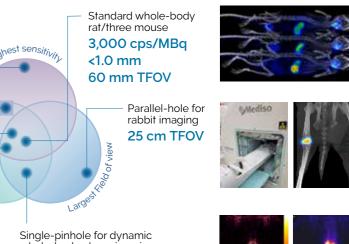
Supporting complete animal preparation before the scan, setting of:

- » Anaesthesia
- » Heating
- » Vital function monitoring

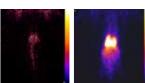
Simplify workflow and increases throughput

	Ultra high focused 13,000 d	sensitivity cps/MBq
6 0	Full stationary dy 3 sec time fra in entire cross se	ection
Standard whole-bo 7,500 cps/MBo	,	Highest esolution
Ultra high energy v >1 MeV	whole-body	Ultra high resolution focused 0.3 mm
True whole-bo collimator	, ,	osition focused




True whole-body collimators enable scanning of the **total crosssection** of the animals in one shot, **without bed movements**. On contrary, focused approach needs multiple steps and moving of the animal laterally due to the significantly smaller static FOV. Consequently, in case of the **focused** approach the **whole-body sensitivity is strongly compromised** by the required multiple bed positions resulting in **longer scan times for the whole animal**.

Free access to the animal


FOV

For dynamic studies it is **crucial to have free access to the animal** and to avoid the use of long catheters. The nanoScan[®] SPECT/CT system is designed to master these needs and to offer the best possible solution with clearly visible and accessible animal in the SPECT field of view.

Single-pinhole for dynamic whole-body planar imaging **1 sec time frames** full lenght of mouse

Using the CT backdoor the animal can be accessed also in the CT field of view

nanoScan[®] MRI 3T/7T

High-end MRI with the most robust cryogen-free magnet on the market

MRI

100% CRYOGEN-FREE • ROBUST MAGNET

- 3T and 7T field strength
- 100% Cryogen-free magnet
- » No liquid helium or nitrogen » Closed loop – no need to top-up
 - helium
- Wide-range of RF Coils and Sequences
- Scompact design:
- » Small footprint
- » Marginal fringe field
- » 480 / 970 kg (3T / 7T)
- » 1050 / 2140 lbs (3T / 7T)

> Powerful Gradient: (up to 1050 mT/m) for DWI application

- Source Low-vibration, rear mounted PulseTube cryocooler for artefact free DWI-EPI
- SmartMagnet"
- » Eco-friendly idle mode
- » Active quench protection Upgrade possibility with 2-types of completely integrated PET systems

PET

multi-pinhole collimators (e.g. MDP bonescan, dynamic, cardiac gated etc.) (12 cm) » Animal models from tiny mouse up to large rabbit (6.5 kg) » Different imaging schemes: helical, circular, full-stationary, 2D » Parallel-hole collimators for imaging large animals » List-mode acquisition MRI SPECT PET CT CT nanoScan[®] SPECT/CT/PET HIGH POWER • HIGH RESOLUTION • LARGE FIELD OF VIEW Versatile SPECT with Real dynamic PET » Fast scanning High-resolution (30 μm) with absolute quantification Small voxel size (10 µm) • Up to x7.6 zoom Ultra-low dose protocol Variable transaxial field of view: (**<1 mGy** for whole-body mouse) 2–12 cm • Highest power: 80 W X-ray tube for

SPECT

HIGH SENSITIVITY • HIGH RESOLUTION • OUTSTANDING THROUGHPUT AT THE SAME TIME

- High resolution (0.3 mm in vivo) and high sensitivity 13 000 cps/MBq
- S Largest field of view for large and multiple-animal imaging
- High-throughput
- Largest installation base 150+
- Highest flexibility:
- » Wide isotope energy range, single or multiple: **20 keV – 1 MeV**
- » Various applications **optimized**

nanoScan[®] SPECT/CT

Versatile SPECT/CT with absolute quantification and full-stationary dynamic imaging

18

nanoScan[®] PET/MRI 3T and 7T Full-scale, quantitative PET combined with a robust, cryogen-free MRI

BEST COUNT RATE PERFORMANCE • HIGHEST RESOLUTION WITH FREE ACCESS TO THE ANIMALS

- Highest resolution (< 0.7 mm)</p> Largest transaxial field of view
- Largest axial field of view (up to **15 cm**)

Total Andrew Statements Statement

- Highest count rate performance (up to 1300 kcps @ 80 MBq) supporting quantitative imaging in » Radiotracer development » Imaging of short half-life **isotopes** (e. g. ¹¹C, ¹³N, ¹⁵O) » Multiple-animal imaging
- Free access to the animal supporting dynamic imaging
- Best NEMA sensitivity up to 10.5% (250-750 keV) and best Minimal Detectable Activity (MDA)
- Excellent quantification
- Largest installation base: 150+

nanoScan[®] PET/CT

Real dynamic PET-system designed for quantitative studies

MultiScan[™] LFER 150 PET/CT

The ultimate tool for PET imaging in primates and medium sized animals

Specifications | nanoScan[®] SPECT/CT

SPECT

Gantry opening up to 27 cm **Spatial resolution** down to 0.3 mm

Sensitivity up to 13 000 cps/MBq

СТ

Gantry opening 16 cm **Transaxial FOV** 12 cm **Axial FOV** 10 cm

Energy range from ¹²⁵I to theranostic and PET isotopes

Animal models mouse, rat, marmoset, guinea pig, rabbit (up to 6.5kg), monkey

Multiple animal imaging up to 3×60 g mice

X-ray power up to 80 W

Spatial resolution 30 µm at 10 µm voxel size

Ultra low-dose protocol down to 1 mSv for whole-body mouse

Detector crystal 9.5 mm Nal(TI) Collimators

Multi-pinhole by proprietary M3-pinhole™ technology Single-pinhole Parallel-hole

Animal models Mouse, rat, marmoset, guinea pig, rabbit Multiple animal imaging

up to 3×60 g mice

Dynamic imaging

Yes, ultra-fast 4D/5D list mode dynamic imaging by static or rotational SPECT

Acquisition schemes SPECT (3D): helical, circular, semi-stationary and full stationary Planar (2D): static, dynamic

Image reconstruction

modified Feldkamp-type for real-time reconstruction, iterative for low-dose and low-noise applications

300+ preclinical systems in **33** countries

PET/CT

SPECT/CT

nanoScan® **MRI 3T/7T**

nanoScan PET/MRI 3T and 7T

nanoScan® SPECT/CT/PET

MultiScan™ LFER150 PET/CT

ISSN:

Global offices

USA and Canada Arlington, VA sales@medisousa.com

Belgium Auderghem info.belgium@mediso.com

Headquarters Budapest, Hungary

NS-SC 0424 EN

United Kingdom and Ireland Farnborough info@mediso.uk

Poland łódź biuro@mediso.pl **Germany and Austria** Münster info@mediso.de

nanoScan® and spinScan® are registered trademarks of Mediso. MultiScan[™], MultiCell[™], Tera-Tomo[™], PrepaCell[™], Nucline[™], InterView[™], SmartMagnet[™] are trademarks of Mediso.